In some problems, some of your choices will be forced or restricted in some way.
For example, how many ways can the word "orange" be rearranged if there are no restrictions, and then, if the first letter must be " n "?

Example

Three girls and four boys are to be arranged in a row for a picture. How many ways can the people be arranged if there are no restrictions? How many ways can they be arranged if no boys and no girls sit next to one another?
no restrictions
no adjacents: note for mason: only possible if boys begin and end the line.
7.6.5.4.3.2.1

ie.

Total: $4!3!=144$ possibilities.
(A) - FOM 12 Page 1

Example
How many combinations of letters can the word "brains" be rearranged if the vowels must be kept together?
Vowels: $A 1_{1}^{1} 1$

Example
How many permutations of the letters in the word "kitchen" can be made if the letters " k," " c," and " n," must be kept together

\checkmark any order:
3 !
Total: $5!3!=720$ possibilities. ${ }_{5} P_{5} P_{3}$

