4.3 - Another Form of Linear Relations

Math 9

4.3: Another Form of the Equation for a Linear Relation

Consider the following scenario:
"Two integers add together to equal 3."

What possible values are there for the two integers? Let's call the first integer " x ", and the second integer " y ". Pick some values for x, and then calculate y :

First Integer, \mathbf{x}	Second Integer, \mathbf{y}
-6	9
-4	7
-2	3
0	-1
2	-3

As an equation, this would be $x+y=3$. Now we can graph this relation:

$$
y=
$$

Is this relation linear?

Math 9

Suppose that x did not appear in our previous equation. $x+y=3$ would become $y=3$. To graph this, we would have to plot all the points on a graph that have a y-coordinate of 3 :

Now suppose y did not appear in our previous equation. $x+y=3$ would become $x=3$. To graph this, we would have to plot all the points on a graph that have an x-coordinate of 3 :

Is this equation linear?
Yes!

So in general, when we have an equation $\mathbf{x}=$ <some number> the line will be \qquad vertical and when we have an equation $\mathbf{y}=$ <some number> the line will be \qquad

Math 9

Example 1: Graphing an Equation in the Form $\mathbf{x}+\mathbf{a}=\mathbf{b}$:

Graph the equation $x+2=0$
We can manipulate the equation algebraically to have only x on one side:

$$
\begin{aligned}
& x+z^{0}=0 \\
& x=-2
\end{aligned}
$$

Now we can graph as normal:

Example 2: Graphing an Equation in the Form ax + by $=\mathbf{c}$:
Graph the equation $3 x-2 y=6$

First make a table a values with numbers for x that you picked (usually, small numbers will make calculations easier). For this question, I'm going to use $-4,0$, and 4 .

Now substitute our x-value of -4 in to the equation and use algebra to solve for y :

Math 9
This value for y is the corresponding value for $\mathrm{x}=-4$ in our table of values.
Do the same for $x=0$, and $x=4$:

$$
\begin{gathered}
x=0 \\
3 x-2 y=6 \\
3(0)-2 y=6 \\
\frac{-2 y}{-2}=\frac{6}{-2} \\
y=-3
\end{gathered}
$$

Now we can fill in our table of values:

x	y
-4	-3
0	-3
4	3

$$
\begin{gathered}
x=4 \\
3 x-2 y=6 \\
3(4-2 y=6 \\
12-2 y=6 \\
-y^{\prime 2}-2 y=-6 \\
-2=-2 \\
y=3
\end{gathered}
$$

Textbook Assignment: Pg. 178 \#4, 5, 7, 9, 11, 15

