Integers are positive AND negative whole numbers.
ie. no decimals, frations,
symbolized by $\mathbb{Z} s$
ie. 3, 2680, $0,-18$ are integers $\because$ $1 / 2, \sqrt{2},-0.15, \pi$ are not integers $\because$

$$
\text { ex: } 3-5=-2
$$

ex: $-1-2=-3$


* Although the " 3 " in -3 is larger than the " 2 " in negative, it is farther to the left on the number, so -3 is Smaller than -2 .

Adding a negative number is like subtracting a positive number:

$$
\text { ex: } 7+(-4)=7-4=3
$$

"Keep-change-change" method

$$
\left.\begin{aligned}
& -9+(-1)=-10 \\
& -9-1=-10 \\
& E x: 10-(-3) \\
& 10+3=13
\end{aligned} \right\rvert\, \begin{array}{r}
\text { Ex:-3-(-8)} \\
-3+8=5
\end{array}
$$

For $x$ and : :

* If the signs are the SAME the rimeries will be positive.
$(t) \times(+)=(+)$
$(-) \times(-)=(+)$
$(+) \times(-)=(-)$
$(-) \times(+)=(-)$
answer will be positive.
If the signs are DIFFERENT the answer will be negative.

$$
\begin{aligned}
& \text { Ex: } 2 \times(-3)=-6 \\
& \text { Ex: }(-8) \times(-8)=64
\end{aligned}
$$

Order of Operations (BEDMAS)
$B=$ Brackets
$E=$ Exponents
$\left.\begin{array}{l}D=\text { Division } \\ m=\text { multiplication }\end{array}\right]$ At the same time
$m=$ Multiplication $\quad$ Addition $\quad$ At the some time.
$S=$ Subtraction

$$
\begin{gathered}
\text { Ex: } \begin{array}{c}
5+3 \times 2 \\
5+6 \\
11
\end{array} \\
\text { Ex: } \begin{array}{c}
(5+3) \times 2 \\
8 \times 2 \\
16
\end{array}
\end{gathered}
$$

