Expand: $\quad(3 d+4)(4 d+2)=(3 d)(4 d)+(3 d)(2)+(4)(4 d)+(4)(2)$

$$
\begin{aligned}
& =12 d^{2}+\underbrace{}_{\substack{6 d+16 d \\
\text { combine }}}+8 \\
& =12 d^{2}+22 d+8
\end{aligned}
$$

Ex: Expand $(-2 g+8)(7-3 g)$

-a" value
For $6 g^{2}-38 g+5^{c} 6$,
Notice how we cannot factor the "a" value out of the other terms, yet we know it's factorable since we started with it's factors.
Another example: $4 x^{2}+20 x+9$
\rightarrow cant factor a 4 out of every term.... \because

When we factor trinomials that look like this, the resulting binomial factors will be in the form:

$$
(a x+b)(c x+d)
$$

*The Decomposition Method: A
Ex: Factor $4 x^{2}+20 x+9$
As we know, we cart factor
a 4 out af every term :̈
\therefore we use decamp.
(1) Find your " $a c^{\prime \prime}$ value. (ie. $a x^{2}+b x+c$)

In our case, $4 x^{2}+20 x+9$

$$
\begin{aligned}
& a=4 \\
& c=9
\end{aligned} \text {, so } a c=(4)(9)=36
$$

(2) Find 2 numbers which multiply to the "ac" value and add to the " b " value:

$$
\begin{aligned}
& \frac{2}{2}+\frac{18}{}=20 \rightarrow 18=36 \rightarrow 0 \\
& 20
\end{aligned}
$$

(3) Decompose the b value in to these 2 numbers:

$$
\begin{aligned}
& 4 x^{2}+20 x+9 \\
= & 4 x^{2}+2 x+18 x+9
\end{aligned}
$$

(4) Divide the polynomial in half, and factor:

$$
\begin{array}{cc}
4 x^{2}+2 x_{y}^{5} & 18 x+9 \\
\vdots & \searrow \\
10 \ldots . a
\end{array}
$$

$$
\begin{array}{cc}
18 & \begin{array}{c}
18 x+9 \\
4 x^{2}+2 x
\end{array} \\
2 x(2 x+1) & =9(2 x+1)
\end{array}
$$

(5) Combine the common factor, and make the last factor from the 2 remaining terms.

$$
2 x(2 x+1) \quad 9(2 x+1)
$$

Notice how each side has $(2 x+1)$:

$$
4 x^{2}+20 x+9=(2 x+1)(2 x+9)
$$

Ex: Factor $3 s^{2}-13 s-10$
ac value:

$$
\begin{aligned}
& \left.\begin{array}{l}
a=3 \\
c=-10
\end{array}\right\} a c=(3)(-10)=-30 \\
& \underline{2}+-15=-13\} \quad 3 s^{2}-13 s-10 \\
& \left.2 x-15=-30\}=3 s^{2}+2 s\right\}-15 s-10 \\
& 3 s^{2}+2 s \quad-15 s-10 \\
& =s(3 s+2)-5(3 s+2) \\
& \therefore 3 s^{2}-13 s-10-(3 s+2)(s-5)
\end{aligned}
$$

HW: Pg. $177, \# 5,6,8,10,12,13,18 / 19$

