3.2 - Perfect Squares \& Cubes
$1 m$

\square

Area $=l \omega$

$$
=(1 m)(1 m)
$$

$$
=1 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& A=l \omega \\
& (2 m)(2 m) \\
& =4 m^{2}
\end{aligned}
$$

Any whole number that can be represented by the area of a square is called a "perfect square" and the lengths of the square's sides are called the "square root".

Square Root $\sqrt{ }=\sqrt[2]{ }$
$E x: \sqrt{25}=?$

$$
?\left\{\begin{array}{l}
? \\
\begin{array}{l}
A= \\
25 \mathrm{~m}^{2}
\end{array} \\
\underbrace{}_{?}
\end{array}\right.
$$

Because $5 m \times 5 m=25 m^{2}$,

$$
\sqrt{25}=5
$$

n : Radicand K: Index
\rightarrow "Radical"

$V=l \omega h$
Volume $=$ lw h

$$
\begin{aligned}
& =(2 \mathrm{~cm})(2 \mathrm{~cm})(2 \mathrm{~cm}) \\
& =8 \mathrm{~cm}^{3}
\end{aligned}
$$

$V=l \omega h$
$=(3 \mathrm{~cm})(3 \mathrm{~cm})(3 \mathrm{~cm})$
$=27 \mathrm{~cm}^{3}$

Any whole number that can be represented by the volume of a cube is called a "perfect cube" and the side length is
the "cube root". 2> $\sqrt[3]{ }$
Ex: $\sqrt[\nu]{1296}=$? Let's use prime factorization:

1296
(2) 648
(2) 324
(2) 162

Notice how we have equal pairs of factors.

$$
42 \text { 's }
$$

$$
43 \prime 5
$$

Because the index is 2, make 2 equal groups: $1296=$

$$
\begin{gathered}
1296= \\
(2 \cdot 2 \cdot 3 \cdot 3)(2 \cdot 2 \cdot 3 \cdot 3)
\end{gathered}
$$

$$
=(36)(36)
$$

$$
\therefore \sqrt{1296}=36
$$

- OR-

Because the index is 2 , talle out pairs of identical factors.

$$
\begin{gathered}
1296=\frac{2 \times 2 \times 2 \times 2 \times 3 \times 3}{1} \\
2 \times 2 \times 3 \times 3 \\
=36
\end{gathered}
$$

$$
E x: \sqrt[3]{1728}
$$

1728
(2) 864
(2) 432
(2) 216
(2) 108
(2) 54
(2) 27
$9^{1 / 3}$

Because our index is now 3, we take out triples of identical factor:
$1728=\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3}{\vdots}$

$$
2 \times 2 \times 3
$$

$=12$

$$
\therefore \sqrt[3]{1728}=12
$$

Ex: A cube has a volume of $4913 \mathrm{~cm}^{3}$. What is the surface area?
The cube root of the volume will give us the side lengths: $\sqrt[3]{ }$

4913

one
cube:
\square
face

$$
\begin{aligned}
\text { Area } & =l \omega \\
& =(17 \mathrm{~cm})(17 \mathrm{~cm}) \\
& =289 \mathrm{~cm}^{2}
\end{aligned}
$$

six faces in a cube,
so

$$
6 \times 289 \mathrm{~cm}^{2}
$$

$$
=1734 \mathrm{~cm}^{2}
$$

The index is 3 , so take out triples:

$$
\begin{aligned}
& 4913=\frac{\sqrt{17 \times 17 \times 17}}{17} \\
& \sqrt[3]{4913}=17 \mathrm{~cm}
\end{aligned}
$$

HF: Pg. 146 \# $3-8,17^{*}$

