Entire Radical: $\sqrt[n]{a}$ ex: $\sqrt{12}, \sqrt[3]{13}$, etc...
mixed Radical: $a \sqrt{b}$ ex: $2 \sqrt{2}, 3 \sqrt[3]{4}$, etc...
Radical Property: $$
n is an $\mathbb{Z}_{\Delta}^{(\text {integer })}$

$$
\sqrt[n]{a \times b}=\sqrt[n]{a} \times \sqrt[n]{b} \quad, \quad, \quad, \frac{n}{3} b \text { are } \mathbb{R}_{(\text {(real })}
$$

Ex: Simplify $\sqrt{8}$

$$
\begin{aligned}
& \text { Simplify } \sqrt{8} \\
& \sqrt{8}=\sqrt{4 \times 2}=\sqrt{4} \times \sqrt{2}=2 \times \sqrt{2}=2 \sqrt{2}
\end{aligned}
$$

Simplify $\sqrt{80}$

Ex: Simplify $\sqrt[3]{144}$

Ex: Write as an entire radical;

$$
\begin{aligned}
& \sqrt{11} \times \sqrt{2}-\sqrt{11-2}=\sqrt{48}
\end{aligned}
$$

Ex: Write as an entire radical,

$$
4 \sqrt{3}=\sqrt{16} \times \sqrt{3}=\sqrt{16 \times 3}=\sqrt{48}
$$

$\succ_{\text {must }}$ be a root to combine
with $\sqrt{3}$

