4.4 -Fractional Exponents

September 27, 2019 10:45 AM
Exponent Law Review:

(1)

$$
x^{n} \cdot x^{m}=x^{m+n}
$$

ex: $2^{2} \cdot 2^{5}=2^{2+5}=2^{7}$
(2)

$$
\begin{aligned}
& \frac{x^{n]}}{x^{m]}}=x^{n-m} \\
& \quad \text { ex: } \frac{8^{9}}{8^{7}}=8^{9-7}=8^{2}
\end{aligned}
$$

(3)

$$
\begin{aligned}
\left(x^{n}\right)^{m} & =x^{m \times n} \\
& e x:\left(5^{2}\right)^{4}=5^{(2)(4)}=5^{8}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& (x \cdot y)^{n}=x^{n} y^{n} \\
& \text { ex: }(2 \cdot 3)^{6}=2^{6} \cdot 3^{6}
\end{aligned}
$$

New exponent Laws:
(1)

$$
x^{-n}=\frac{1}{x^{n}}
$$

ex: $3^{-2}=\frac{1}{3^{2}}$, also, $\frac{1}{5^{-3}}=5^{3}$
(2)

$$
\begin{aligned}
& x^{m / n}=\sqrt[n]{x^{m}} \\
& \text { ex: } 3^{1 / 2}=\sqrt[2]{3^{1}}=\sqrt{3} \\
& \text { ex: } 7^{4 / 3}=\sqrt[3]{7^{4}}
\end{aligned}
$$

Example: Evaluate w/o a calculator:

$$
\begin{aligned}
& 27^{1 / 3}=\sqrt[3]{27^{1}}=\sqrt[3]{27}=\sqrt[3]{3 \cdot 3 \cdot 3}=3 \\
& (3)^{-2}=\frac{1}{3^{2}}=\frac{1}{9}=0.1 \\
& \left(\frac{4}{9}\right)^{-1 / 2}=\left(\frac{9}{4}\right)^{1 / 2}=\sqrt[2]{\left(\frac{9}{4}\right)^{1}}=\sqrt{\frac{9}{4}}=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2} \\
& 27^{4 / 3}=\sqrt[3]{27^{4}}=[\sqrt[3]{27}]^{4}=[3]^{4}=81 \\
& \text { En general: }_{\ln / \sqrt{n}}^{\rightarrow \text { exponent }}
\end{aligned}
$$

$$
\sqrt{H W: P g . ~} 227 * 3-6,10-12,
$$

