Right Triangles:
Hypotenuse

Depending on where the angle we're interested in is located, the 2 remaining sides are either called "opposite," or " adjacent."
$\binom{$ the Greek letter "theta", θ, }{ is used to represent unknown angles }
ie.

The tangent (tan) of an angle " θ " gives us $\frac{\text { length of opposite side }}{\text { length of adjacent side }}$ length of adjacent side,
ie. $\nless \tan \theta=\frac{O P P}{a d j}$
also, to find θ, we use "inverse $\tan " \tan ^{-1}$ ie. $\theta=\tan ^{-1}\left(\frac{O P P}{a d j}\right)$ \#

Ex: Calculate the length of " x ".

$$
\begin{aligned}
& \Rightarrow \theta=27^{\circ} \Rightarrow \tan \theta=\frac{\text { Opp }}{A d j} \\
& O_{\text {Pp }}=5 m \quad x_{x} \tan \left(27^{\circ}\right)=\frac{(5 m)}{x} \\
& A d_{j}=X \\
& \frac{x \tan \left(27^{\circ}\right)}{\tan \left(27^{\circ}\right)}=\frac{5 m}{\tan \left(27^{\circ}\right)} \\
& x=\frac{5 m}{\tan \left(27^{\circ}\right)}=\frac{5 m}{0.50952 \ldots} \\
& \cong 9.81 \mathrm{~m}
\end{aligned}
$$

Ex: Find angle θ :

* Very Important \& !!!

$$
\begin{aligned}
& \Rightarrow \theta=? \quad \Rightarrow \quad \tan -1 \tan \theta]=\left[\begin{array}{l}
\tan ^{-1} \\
\left.\frac{O P p}{A d j}\right]
\end{array}\right. \\
& \text { opp }=3 \mathrm{~m} \\
& A d_{j}=4.5 \mathrm{~m} \\
& \theta=\tan ^{-1}\left(\frac{O P P}{\text { adj }}\right) \\
& \theta=\tan ^{-1}\left[\frac{(3 \mathrm{~m})}{(4.5 \mathrm{~m})}\right] \\
& \theta=33.69^{\circ}
\end{aligned}
$$

Your calculator

Must be in
"DEGREE MODE".

Step 1: Find angle
Step 2: Label Triangle
Step 3: Set up $\tan \theta=\frac{O_{p} p}{d d j}$
Step 4: Substitute your values
Step 5: Algebra to solve.

HW: Pg. 75 \# $5,8,13$-Finding Sides $\mathrm{Pg} .82 \# 3-5,10<$ Finding Angles

