Just like with tangent, we can use sine and cosine to find the length of sides:

EX:

$$
\begin{gathered}
\cos \theta=\frac{\text { Adj }}{\text { Hap. }} \\
x \times \cos \left(68^{\circ}\right)=\frac{(9 m)}{x} \\
\frac{x \cos \left(68^{\circ}\right)}{\cos \left(68^{\circ}\right)}=\frac{9 m}{\cos \left(68^{\circ}\right)} \\
x=\frac{9 m}{\cos \left(68^{\circ}\right)}=\frac{9 m}{0.374606 \ldots} \cong 24.02520 \ldots \mathrm{~m} \\
x=24.03 \mathrm{~m}
\end{gathered}
$$

Ex: Find x to the nearest meter:
$\sqrt{\text { Opp }}$ We have hyp, and we want opp

$$
\begin{gathered}
\sin \theta=\frac{O P D}{H y P} \\
9.6 \mathrm{~m} \times \sin \left(26^{\circ}\right)=\frac{x}{(9.6 \mathrm{~m})} \times 96 \mathrm{~m} \\
(9.6 \mathrm{~m})\left(\sin \left(26^{\circ}\right)\right)=x \\
x=9.6 \mathrm{~m} \times 0.43837 \ldots \\
x \cong 4.208 \ldots \mathrm{~m} \\
x=4 \mathrm{~m}
\end{gathered}
$$

Ex: The angle of elevation of a roof is 37°, and the piece of wood used for half the roof is 17 m . What is the length of the ceiling from wall to wall? (To the nearest tenth).

We have hyp, we wand adj. so...

$$
\begin{aligned}
& d=2 x \\
& d=2(13.5768 \ldots \mathrm{~m}) \\
& d=27.1536 \ldots \mathrm{~m} \\
& d=27.2 \mathrm{~m} \\
& H W: P g .101 \neq 3-7,12
\end{aligned}
$$

