2.7 -Problems Involving $2+$ Triangles

Angle of Elevation:

Angle of Depression:

Ex: Find $C D$ to the nearest tenth:

\Rightarrow Cart find in one step $\ddot{\sim}$

Finding BD will be useful....
we have OPP SOH CAH TOA we want hyp.

$B D=\frac{4.2 \mathrm{~cm} \times 1}{\sin 47^{\circ}}$
BD $\cong 5.7427 \ldots \mathrm{~cm}$
we have hyp. SOH(CAH)TOA we want adj.

Ex: A fire ranger atop a 90 ft tower sees a fire due west at an angle of depression of 5°. He sees another fire due south at an angle of depression of 2°. How far are the fires away from each other?

$$
\tan \theta=\frac{o p p}{A d j}
$$

$$
f_{1}=90 \cdot \tan 85^{\circ}
$$

The angles of depression are 2° and 5°, so the angles between the tower are:

$$
\tan \theta=\frac{o p p}{A d j}
$$

$$
f_{1} \cong=1028.7047 \mathrm{ft} .
$$

$$
\begin{gathered}
90 \cdot \tan \left(88^{\circ}\right) \frac{f_{2}}{(90)} \\
f_{2}=90 \cdot \tan 88^{\circ} \\
f_{2} \cong 2577.2627 \mathrm{ft}
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow & a^{2}+b^{2}=c^{2} \\
& f_{1}^{2}+f_{2}^{2}=x^{2}
\end{aligned}
$$

$(1028.7047 \mathrm{ft} .)^{2}+(2577.2627 \mathrm{ft} .)^{2}=x^{2}$

$$
x=\sqrt{(1028.7047 \mathrm{ft})^{2}+(2577.2627 \mathrm{ft})^{2}}
$$

$$
x \cong 2774.9805 \mathrm{ft}
$$

$$
x=2775 \mathrm{ft}
$$

HW: Pg. 118 \# $3-6,9,11,19^{*}$

